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                                                                        Abstract 
 

This paper presents novel empirical evidence related to the pollution premium. First, investors are 

concerned about whether a firm has higher scaled emissions relative to its industry peers rather 

than companies in other sectors. Second, it is the emission intensity but not the level of or growth 

rate in total emissions that is priced in the cross-section. Third, the positive relation between 

emission intensity and future returns in a multivariate setting is dependent on the inclusion of 

industry-fixed effects. Fourth, variables that proxy for limits-to-arbitrage and informational 

frictions do not account for the pollution premium. Fifth, there is no indication that firms with 

higher scaled emissions produce higher earnings surprises which does not support a mispricing-

based explanation. Finally, firms with higher emission intensities have lower institutional 

ownership by investment advisers. 
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1. Introduction  

 Asset pricing implications of corporate social responsibility (CSR), climate change and 

firms’ environmental, social and governance (ESG) performances constitute a rapidly growing 

body of literature. Some studies find that firms with higher social capital and better engagement 

with ESG issues are less risky (Lins et al., 2017; Albuquerque et al., 2019; Hoepner et al., 2024). 

Studies that focus on carbon emissions find that polluting firms carry higher risk exposures (Ilhan 

et al., 2021; Barnett, 2023; Bolton and Kacperczyk, 2021, 2023). Behavioral phenomena such as 

under- or overreaction to environmental news, investor inattention and social sentiment can also 

drive return predictability (Kruger, 2015; Hong et al., 2019; Chen et al., 2020; Atilgan et al., 2024). 

Many investors have a preference towards stocks with better CSR and ESG scores1 which can 

further affect asset prices and systematic risk exposure (Pastor and Stambaugh, 2021, 2022; Ardia 

et al., 2023). Another group of studies finds that firms with environmental issues face higher costs 

of capital (Heinkel et al., 2001; Hong et al., 2023; de Angelis et al., 2023).  

 Hsu et al. (2023) make a significant contribution to this literature by investigating how 

industrial pollution is priced in the cross-section of stock returns. They use facility-level data on 

toxic pollutant emissions to generate a measure of emission intensity (total emissions scaled by 

firm size) at the firm-level. Their main finding is that firms producing more scaled emissions are 

associated with higher subsequent returns after controlling for various asset pricing factors and 

firm characteristics. The authors consider several explanations for the pollution premium. First, 

the premium may be compensation for various systematic risks attached to companies with higher 

scaled emissions. These risks may be driven by technology obsolescence (Lin et al., 2019), 

financial constraints (Li, 2011), political and economic uncertainty (Bali et al., 2017; Brogaard 

and Detzel, 2015), and adjustment costs (Gu et al., 2018). Second, high-emission intensity firms 

could be operating under weaker governance, or they may be more politically connected such that 

their profits are subject to more uncertainty with respect to governance. Third, behavioral issues 

may be at play such as both retail and institutional investors having preferences against firms with 

a poor social image, or retail investors overreacting to firms’ emission news. However, bivariate 

 
1 See Renneboog et al. (2008), Riedl and Smeets (2017), Dyck et al. (2019), Hatzmark and Sussman (2019), Krueger 

et al. (2020), Liang et al. (2022), Hwang et al. (2022), Ilhan et al. (2023), and Cao et al. (2023) for institutional 

investors’ preferences towards sustainable investment. Bauer at al. (2021) and Heeb et al. (2023) conduct field 

experiments to investigate individuals’ preferences. 
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sorts and multivariate regressions indicate that none of these explanations can account for the 

pollution premium. 

 Next, the authors develop a model based on environmental policy uncertainty where firms’ 

cash flows are sensitive changes in environmental regulations. In the model, the government 

optimally replaces a weak-regulation regime with a strong-regulation regime if the negative 

externality induced by toxic emissions is sufficiently high, and firms are able to estimate a 

perceived probability of regime shift by observing signals. If a strong-regulation regime is adopted, 

firms with high emission intensities are affected more adversely since the higher sensitivity of their 

profits to regime shift is coupled by an overall jump in the stochastic discount factor. This type of 

systematic risk can explain the higher expected returns to firms with higher scaled emissions. The 

study also tests this model by using the growth rate in the aggregate amount of pollution-related 

civil penalties as a measure of regime change risk. This risk is negatively priced in the cross-

section with higher emission-intensity firms possessing lower betas. Moreover, environmental 

policy uncertainty is distinct from general policy uncertainty that has been investigated by prior 

literature (Bloom, 2009). 

 In this paper, our first goal is to investigate how some methodological choices made by 

Hsu et al. (2023) impact the existence or magnitude of the pollution premium. We aim to gain a 

deeper understanding of investor preferences towards industrial pollution rather than discrediting 

prior findings. Hsu et al. (2023) assign firms into portfolios based on their scaled emissions relative 

to industry peers due to the fact that toxic emissions tend to vary across business sectors. Thus, the 

documented pollution premium indicates that investors impose a higher return premium to firms 

with higher emission intensity compared to other firms in the same industry. We first confirm the 

original findings in an updated sample period. We later examine whether investors demand a 

higher premium from high-emission intensity stocks regardless of industry designation. In other 

words, we ask the question whether investors also penalize the entire set of companies that operate 

in industries that generate more scaled emissions. To answer this question, we repeat the portfolio 

analyses in Hsu et al. (2023) without initial industry sorts and find that pollution premium is solely 

an intra-industry phenomenon. Third, motivated by the debate in the literature regarding the 

relation between carbon emissions and stock returns, we examine which measures of toxic 

emissions are priced by investors. Specifically, we ask the question whether investors are only 

concerned about emissions scaled by a proxy for firm size, or they also penalize companies that 
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emit more toxic pollutants regardless of their size. We find that it is only emission intensity that is 

priced since portfolio sorts based on the level of or growth in emissions produce no pollution 

premia. Fourth, we conjecture that regime change risk related to environmental policies could be 

a more pronounced factor in recent years as investors became more aware and vocal about 

environmental concerns. However, there is no robust evidence that the pollution premium is 

stronger in the second half of our sample period. Fifth, we find that high versus low emission 

intensity firms display significant dispersion in terms of a number of firm characteristics that have 

been shown by prior asset pricing studies to influence the cross-section of equity returns. 

Controlling for many of these control variables in bivariate sorts renders the pollution premium 

insignificant, however, these sorts may lack power due to within-industry sorting. When we 

control for these characteristics in multivariate cross-sectional regressions, emission intensity does 

have a significantly positive relation with future returns, but only after including industry fixed-

effects in the specifications. Since these fixed-effects correspond to demeaning all variables at the 

industry level, it would be more accurate to state that firms with higher scaled emissions relative 

to their industry peers earn higher future returns relative to their industry peers. 

 Our second goal in this paper is to test for some alternative explanations of the pollution 

premium that have not been entertained by Hsu et al. (2023). First, we rely on the anomalies 

literature to test whether the pollution premium can be accounted for limits-to-arbitrage, 

mispricing or informational frictions. Specifically, we utilize bivariate sorts on emission intensity 

and a number of variables that capture how exposed stocks are to costly arbitrage, mispricing and 

informational uncertainty. We find no evidence that the pollution premium is concentrated among 

more mispriced stocks that are costlier to arbitrage and subject to more informational frictions. 

Second, to further inquire into a mispricing-based story, we examine whether higher returns to 

firms with higher emission intensities are concentrated around earnings announcements. It may be 

the case that investors initially underprice firms with higher scaled emissions, but then reward 

them with higher returns as companies post higher unexpected earnings due to lack of emission 

abatement in the presence of delayed regulation. We find no evidence for this hypothesis since 

there is no significant relation between emission intensity and different measures of standardized 

unexpected earnings. Third, we consider a divestment-based hypothesis for the pollution premium. 

If a sufficient proportion of institutional investors divest from stocks of firms with higher scaled 

emissions, the ensuing demand pressure could push the prices of such stocks downwards compared 
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to their expected cash flows. We test this conjecture by looking at the relation between emission 

intensity and ownership ratio attached to various groups of institutional investors. Although we 

find that investment companies such as mutual funds have reduced holdings in high emission-

intensity firms, the economic magnitude of this effect is limited. 

 The rest of the paper is organized as follows. Section 2 describes data sources and variable 

definitions. Section 3 presents empirical results. Section 4 concludes.  

 

2. Data and Variables 

2.1 Data sources 

We obtain plant-level chemical pollutants data from the Toxic Release Inventory (TRI) 

database maintained by the Environmental Protection Agency (EPA).2 The database was 

constructed in 1986 in response to public concerns over the release of toxic chemicals from various 

environmental incidents. EPA tracks certain classifications of toxic substances and chemical 

pollutants that cause adverse health and environmental effects.3 It further mandates every facility 

that falls within a TRI-reportable sector, has ten or more employees, and crosses a certain threshold 

in manufactured or processed TRI-listed chemicals to report the amount of each chemical being 

released.4,5 The database contains reporting years, chemical categories, chemical pollutant levels, 

facility locations and parent company names. TRI has an exceedingly high ratio of zeros in 

facilities’ chemical emissions before 1991, thus, we utilize facility-level TRI data from 1991 to 

2022. For each facility in a year, we use the value of the item “PRODUCTION WSTE (8.1-8.7)” 

which is the sum of the amounts of all toxic emissions in pounds across all chemical categories. 

Then, we aggregate annual facility-level total emissions by parent names to estimate firm-level 

total emissions. 

 
2 See Chava (2014), Currie et al. (2015), Kim et al. (2019), Akey and Appel (2021), Xu and Kim (2022), Heath et al. 

(2023), and Jing et al. (2023) for other studies that utilize this database. 
3 The current TRI toxic chemical list contains over 600 individually listed chemicals that correspond to a multitude of 

environmental categories, including air pollution, clean energy, acid rain, hazardous waste and safe drinking water. 
4 It is a criminal offense to falsify information given to the U.S. government. There are also civil and administrative 

penalties for non-compliance with TRI reporting mandates. Moreover, EPA monitors each form submitted by a facility 

for potential errors, conducts an extensive quality analysis of the reported data and provides analytical support for 

enforcement efforts led by its Office of Enforcement and Compliance Assurance. 
5 The mandatory nature of this reporting makes it less likely for firms to self-select themselves into disclosure or non-

disclosure. This minimizes the likelihood of endogeneity which is a more serious issue in studies focusing on the 

effects of carbon emissions on stock returns in which case disclosure is voluntary. 
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Stock return and accounting data come from CRSP and Compustat, respectively. 

Institutional holdings data are retrieved from Thomson Reuters Institutional Holding (13F) 

database. Analyst forecast estimates are obtained from I/B/E/S. One challenge in using TRI data 

is the lack of linking keys with various financial databases. Thus, we follow Hsu et al. (2023) and 

use a string-matching algorithm to match parent names in the TRI database to the names of U.S. 

public companies in CRSP and Compustat. Specifically, we remove all punctuation marks, clean 

special characters and standardize most common words to a consistent format.6 We keep all unique 

matches with similarity scores equal to 100%. When there are multiple matches and similarity 

scores are below 100%, we rank all potential matches based on their scores and manually identify 

the appropriate matches. We include all domestic common shares trading on NYSE, AMEX or 

Nasdaq with non-missing TRI data and SIC codes. We exclude financial firms and require that 

firms are listed on Compustat for at least two years before being included in the sample.7 The final 

sample used in the portfolio analyses consists of 111,753 firm-month observations. 

 

2.2 Variable definitions  

 It is possible that any significant relation between emission intensity and future returns is 

driven by a correlation between emission intensity and some firm characteristic that has been 

established to be a significant determinant of the cross-section of equity returns by the prior 

literature. Thus, we control for various stock attributes in bivariate portfolio and Fama and 

Macbeth (1973) cross-sectional regression analyses. Beta is the market beta with respect to the 

CRSP value-weighted market index calculated from daily returns during the past year.8 

Following Fama and French (1992), we calculate the natural logarithm of market capitalization 

in millions of dollars (Size) and book-to-market equity ratio (BM) where book value of equity is 

measured at the fiscal year end in calendar year t-1. We control for the short-term reversal (STR) 

effect of Jegadeesh (1990) and the momentum (MOM) effect of Jegadeesh and Titman (1993) 

using the one-month lagged stock return and cumulative return during the past 12 months 

 
6 For example, we standardize “Manufacturing” to “MFG”, “Internationals” to “INTL”, “Incorporation” to “INC”, 

“Company” to “COM”, “Industry” to “IND”, etc.  
7 We use two extra screens that are not discussed in Hsu et al. (2023) but are included in their replication code. First, 

we drop industries with less than 20 firms in a year based on the Fama and French (1997) 49-industry classification. 

As a result, sample firms come from 18 distinct industries which are identical to those listed in Table A8 of Hsu et al. 

(2023). Second, we drop an observation if total assets or sales are less than one million dollars. 
8 We require that at least 150 (10) non-missing daily return observations exist in a year (month) when we calculate 

variables using within-year (month) data.  
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skipping the most recent month, respectively. To account for the illiquidity premium, we 

calculate the Amihud (2002) illiquidity measure (Illiq) as the absolute daily return of a stock 

divided by its daily dollar trading volume (in millions) averaged over the month. Coskewness 

(Coskew) is calculated as the coefficient of the squared excess market return term from a 

regression of daily excess stock returns on daily excess market returns and squared daily excess 

market returns in the past year following Harvey and Siddique (2000). Following Ang et al. 

(2006), we calculate idiosyncratic volatility (IVOL) as the standard deviation of error terms from 

the application of the three-factor model of Fama and French (1993) to daily excess stock returns 

within a month. Following Bali et al. (2011), we take the lottery-demand effect into account by 

calculating the average of the five highest daily returns of each stock (MAX) in each month. 

Finally, to control for the cross-sectional pricing effects of profitability (Novy-Marx, 2013) and 

investment (Cooper et al., 2008), we calculate operating profitability (OP) as earnings before 

interest and taxes scaled by shareholders’ equity for the most recent quarter prior to the portfolio 

formation month and asset growth (IA) as the annual percentage change in total assets for the 

fiscal year ending in calendar year t-1, respectively.9 

 To test whether costly arbitrage provides an explanation for the pollution premium, we 

investigate the interactions between emission intensity and firm size, illiquidity and firm age 

(AGE) defined as the number of months that a stock has been listed on the CRSP database. To 

examine whether informational frictions can account for the pollution premium, we use 

institutional ownership ratio (INST) calculated by dividing the institutional ownership level 

computed using equity holdings by institutions that file 13F reports by total shares outstanding 

at the latest quarter end. We further use analyst coverage (CVRG) defined as the number of 

analysts covering the stock in the I/B/E/S database and firm size as alternative proxies for 

information frictions. Finally, to investigate whether the pollution premium is stronger among 

stocks that are more mispriced, we use the mispricing metric (MISP) of Stambaugh et al. (2017). 

This measure is created by ranking stocks independently based on 11 return anomalies in such 

 
9 This list of control variables has firm size, book-to-market ratio, operating profitability and investment in common 

with that used by Hsu et al. (2023) although we measure the latter two in an alternative way. The other characteristics 

controlled by Hsu et al. (2023) are tangibility, financial constraints, operating leverage and book leverage which are 

borrowed from the corporate finance literature and not commonly used by cross-sectional asset pricing studies. 



8 

 

an order that a higher rank is associated with lower one-month-ahead stock returns.10 Next, the 

arithmetic average of the ranks of the 11 anomalies (with a minimum of five available) is taken. 

 The pollution premium can also be due to institutional investors divesting from stocks of 

companies that emit relatively more toxic pollutants. To test this hypothesis, we regress 

institutional ownership ratio (INST) as defined above on emission intensity and various control 

variables. We further decompose institutional ownership with respect to subgroups of owners. 

INST_BANK is ownership ratio by banks, INST_INSUR is ownership ratio by insurance 

companies, INST_INVEST is ownership ratio by investment companies (such as mutual funds), 

INST_ADVISER is ownership ratio by independent investment advisers (such as investment 

banks, brokers, private wealth management companies) and INST_OTHER is ownership ratio by 

other institutions (such as pension funds, sovereign wealth funds, hedge funds). 

 In our final set of tests, we investigate the relation between toxic emission intensity and 

earnings surprises. SUE1 is the one-year earnings surprise calculated as the actual earnings per 

share (EPS) for the fiscal year ending in year t minus the median analyst forecast, scaled by the 

year-end stock price. The analyst consensus forecast is taken eight months prior to the end of the 

forecast period, i.e. four months after the prior fiscal year-end, to ensure that analysts observe prior 

earnings when making their forecasts. SUE2 is the two-year earnings surprise and calculated in an 

analogous manner, with the consensus forecast taken 20 months prior to the end of the forecast 

period. As in Easterwood and Nutt (1999), Giroud and Mueller (2011), and Edmans (2011), we 

remove observations where the forecast error is larger than 10% of the stock price. LTG is the 

long-term growth surprise and equal to the actual five-year EPS growth taken from I/B/E/S minus 

the median growth forecast from 56 months earlier.  

 

3. Empirical results 

3.1 Univariate portfolio sorts 

In our baseline univariate portfolio analyses, we scale total emissions (in pounds) in year 

t-1 by total assets, plant, property and equipment, sales or market value of equity disclosed by the 

end of March of year t. Emissions data for year t-1 are updated between July and September of 

 
10 These anomalies are financial distress, O-score bankruptcy probability, net stock issues, composite equity issues, 

total accruals, net operating assets, momentum, gross profitability, asset growth, return on asset, and investment-to-

assets. 
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year t in TRI, thus, we construct portfolios at the end of September of year t to avoid look-ahead 

bias. We sort all firms with positive emission intensities in year t-1 into quintiles within 49 Fama 

and French (1997) industries.11 We calculate monthly value- or equal-weighted excess returns of 

these quintiles from October of year t to September of year t+1. Next, we form an arbitrage 

portfolio that takes a long (short) position in stocks in the high-emission (low-emission) intensity 

quintile. We also calculate two measures of abnormal returns (alphas) as intercept terms from time-

series regressions of emission intensity-sorted portfolios’ excess returns on two sets of asset 

pricing factors. FF6PS model augments the market, size, value, profitability and investment factors 

of Fama and French (2015) by the momentum factor of Carhart (1997) and the liquidity factor of 

Pastor and Stambaugh (2003). Q5PS model augments the market, size, profitability, investment 

and expected growth factors of Hou et al. (2021) by the liquidity factor of Pastor and Stambaugh 

(2003).12 We multiply all excess returns and alphas by 12 and report annualized average returns in 

percentage. Moreover, all t-statistics are based on standard errors that are corrected for 

heteroskedasticity and autocorrelation using the Newey and West (1987) procedure with 12 lags. 

Results are presented in Table 1. When emissions are scaled by total assets in Panel A, the 

annualized value-weighted excess return spread between extreme quintiles is 6.13% (t-statistic = 

2.64). FF6PS and Q5PS alphas associated with the arbitrage portfolio are also significantly positive 

with values of 3.47% and 5.91%, respectively. When the scaling variable is altered to plant, 

property and equipment, total sales and market value of equity in Panels B to D, all value-weighted 

return spreads remain significantly positive with values of 4.80%, 6.00% and 4.61%, respectively. 

Moreover, five of the six alphas are also statistically significant at least at the 10% level. Similar 

findings are observed for equal-weighted portfolio returns in the right-hand side of Table 1.13 

These findings reaffirm the existence of the pollution premium in an extended sample period.14  

 
11 Findings are robust to using GICS industry or 2-digit SIC codes. 
12 Risk-free rates and factor data for the FF6 model are obtained from Kenneth R. French’s website. Factor data for 

the Q5 model are obtained from global-q.org. Liquidity factor data are obtained from Robert Stambaugh’s website. 

Hsu et al. (2023) report alphas based on CAPM, FF3, FF4, FF5 and Q4 models neither of which adjust for the 

expected growth and liquidity factors. 
13 Many anomalies have been shown to be more pronounced among smaller stocks that are exposed to higher arbitrage 

costs and informational frictions. When we compare the economic magnitude of the pollution premium based on 

value- versus equal-weighted returns, we do not observe a consistent pattern. Value-weighted return spreads between 

extreme quintiles are higher for three scaling variables (except market value of equity) and value-weighted alpha 

spreads are higher for four out of eight metrics. However, returns and alphas associated with the arbitrage portfolio 

are all statistically more significant for equal-weighted portfolio returns with t-statistics never dipping below 3. 
14 Portfolios are updated annually, thus, emission intensity observed in September of year t is used to forecast 12 

different monthly returns from October of year t to September of year t+1. Our baseline tests correspond to the average 
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As explained above, baseline portfolio sorts are conducted within industries following Hsu 

et al. (2023). In other words, firms are classified to have high or low emission intensities based on 

how much their scaled emissions are on a relative basis with respect to companies in the same 

sector. Thus, the findings of Table 1 indicate that investors demand a higher return premium from 

stocks of firms that pollute more relative to their industry peers. This raises the question whether 

investors also price scaled emissions at an absolute basis in the cross-section. Some industries in 

our sample, such as medical equipment and lab equipment, have substantially lower average 

emission intensities compared to other industries such as oil and construction. It is possible that a 

company that is placed in the lowest emission intensity quintile in the oil industry would have 

found itself in the highest emission intensity quintile if it was operating in the medical equipment 

industry. To answer this question, we conduct univariate sorts across industries such that 

companies that operate in inherently high-scaled emission (low-scaled emission) industries are 

represented at a higher frequency in the high-emission intensity (low-emission intensity) quintile.  

Results are presented in Table 2. Value-weighted returns to the arbitrage portfolio that is 

long (short) in stocks with high (low) emission intensity are smaller in magnitude compared to the 

analogous figures in Table 1. Moreover, value-weighted return spreads become statistically 

insignificant at the 5% level when the scaling variable is assets or sales. Furthermore, none of the 

associated alphas are statistically significant at the 5% level. Equal-weighted returns to the 

arbitrage portfolio tell a similar story with no evidence for a pollution premium with the exception 

of market value of equity as the scaling variable.15  

These findings indicate that investors are concerned about where companies stand among 

their industry peers with respect to their emission intensities, however, they do not demand a return 

premium from stocks of companies which do not pollute relatively more with respect to their 

industry peers even if they pollute relatively more with respect to the overall universe of equities. 

In other words, investors do not penalize entire industries when they price industrial pollution in 

the cross-section.16 

 
predictive power of emission intensity for these 12 distinct monthly returns. When we investigate the relation between 

emission intensity and monthly returns from one- to twelve-months ahead separately, we find that the predictive power 

of emission intensity becomes statistically insignificant after six months. 
15 We also conduct an additional test where we de-mean scaled emissions of a firm with the average scaled emissions 

of its industry and sort stocks into quintiles based on these demeaned emission intensities across industries. Equal-

weighting still produces a significant pollution premium for all scaling variables, however, value-weighted return 

spreads become statistically insignificant when total assets or market value of equity is used to scale total emissions. 
16 All portfolio sorts are done within industries from this point on in the paper. 
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3.2 Level of and growth in emissions 

 The correct measure of emissions has been a contentious subject of debate in the literature 

that investigates the relation between carbon emissions and equity returns. Bolton and 

Kacperczyk (2021) find that stocks of firms with higher total carbon dioxide emissions and 

changes in emissions earn higher returns, however, a similar relation is not observed for emission 

intensity which is defined as tons of CO2 equivalent divided by total revenues. Aswani et al. 

(2024a) point out that a key component that data vendors use to estimate carbon emissions is 

firm size, thus, measuring emissions in terms of intensity, rather than its raw value, is more 

effective in neutralizing any mechanical correlation with firm size. Bolton and Kacperczyk 

(2024) respond to this critique by making the point that a large firm can be perceived as more 

environmentally friendly than a small firm, even though its impact on the climate in terms of the 

magnitude of its carbon emissions is much larger. They also argue that dividing emission levels 

by revenues introduces noise to the proxy for carbon transition risk exposure because changes in 

emission intensity can be due to either changes in total emissions or changes in revenues. Aswani 

et al. (2024b) reply to this rebuttal by stating that, if consumers demand a certain quantity of a 

good, it is overall greener for the economy if firms with lower emission intensity produce more 

of the good. Thus, if firms are not going to cut down economy-wide production, then total 

emissions are not an appropriate measure of firm-level carbon risk. Moreover, after 

acknowledging that scaling emissions by revenues introduces noise, they argue that this is still 

less problematic than including both total emissions and a proxy for firm size as two separate 

independent variables since this introduces severe multicollinearity to regression specifications. 

 We do not to pick a side on this argument, and we already know that, contrary to carbon 

emission intensity, toxic emission intensity is priced in the cross-section of equity returns. Still, 

we would like to know whether investors also demand a higher return premium for stocks of 

firms that emit a higher level of toxic pollutants or experience a higher growth in the amount of 

total emissions. To answer this question, we repeat the within-industry univariate sorts of Table 

1, however, we use the level of raw emissions or the annual percentage growth rate in raw 

emissions as sorting variables rather than emission intensity. Results are presented in Table 3. 

Panel A shows that the value- and equal-weighted return and alpha spreads between extreme raw 

emission quintiles are all statistically indistinguishable from zero. Panel B shows that the 
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annualized value-weighted return spread between the highest and lowest emission growth 

quintiles is 6.02% with a t-statistic of 1.72, however, FF6PS and Q5PS alphas are statistically 

insignificant. Equal-weighted return and alpha spreads based on emission growth sorts are also 

statistically insignificant.17 These results suggest that, unlike the carbon premium, investors 

demand a pollution premium based on the magnitude of toxic emissions relative to firm size 

rather than the level of or growth in these emissions. 

 

3.3 Subperiod analysis 

 The Paris Agreement, that was negotiated during the United Nations Climate Change 

Conference in December 2015, raised awareness of risks tied to carbon emissions at a global 

scale. With 195 signatories committing to limit the rise in global surface temperature to well 

below 2 °C (3.6 °F) above pre-industrial levels, the agreement also increased the prospect of 

regulatory interventions to limit carbon emissions. As a result, many researchers were motivated 

to investigate how investors reacted to the agreement (e.g., Monasterolo and de Angelis, 2020; 

Alessi et al., 2024). In particular, Bolton and Kacperczyk (2021, 2023) find that the global carbon 

premium jumps after the Paris agreement and becomes highly significant.  

 When it comes down to industrial pollution, there are no landmark regulatory events in 

our sample period that had as major a global impact as the Paris Agreement. Moreover, despite 

several United Nations summits (such as the ones held in Stockholm and Rio de Janeiro in 1972 

and 1992, respectively) which aimed to develop an international environmental law, most 

legislation related to pollution are effective at the national or local level and date back to several 

decades ago.18 Nonetheless, it would not be a stretch to state that environmental problems have 

become more pronounced and visible in recent periods and the corporate world has become more 

sensitive towards these issues under practices labelled as corporate social responsibility, 

sustainable business or “ESG”. The finance industry has also become more engaged with 

environmental issues as institutional investors have made the environmental performances of 

 
17 We only report value-weighted portfolio returns from this point on in the paper since conclusions are qualitatively 

the same for equal-weighted returns. 
18 Some examples from the United States include Clean Air Act of 1963 (amended several times until 1990), Clean 

Water Act of 1972 (amended in 1977 and 1987), Safe Drinking Water Act of 1974 (amended in 1986 and 1996), 

Solid Waste Disposal Act of 1965 and Resource Conservation and Recovery Act of 1976 (amended in 1984 and 

1996), Toxic Substances Control Act of 1976, Oil Pollution Act of 1990. 
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firms a key factor in their portfolio allocation decisions. As a result, the regime change risk that 

has been identified by Hsu et al. (2023) is likely to be more relevant later in our sample period. 

 We test whether periods with greater environmental awareness are associated with a 

higher pollution premium by conducting the univariate sorts of Table 1 separately for two 

subperiods that range from 1992 to 2006 and 2007 to 2022. In Panel A of Table 4, when the 

scaling variable is total assets, one can see that the return spread between high- and low-emission 

intensity quintiles during the first subsample is 3.75% with FF6PS and Q5PS alphas equal to 

2.30% and 3.47%, respectively. Analogous figures in the second subsample are 8.31%, 5.21% 

and 8.88% which indicates that the economic magnitude of the pollution premium has more than 

doubled over time. Return and alpha spreads between extreme emission intensity quintiles are 

also higher in the second subsample in Panel C where the scaling variable is total sales. However, 

these patterns are reversed in Panels B and D where raw emissions are scaled by plant, property 

and equipment, and market value of equity, respectively. For example, in Panel B, the return, 

FF6PS alpha and Q5PS alpha to the arbitrage portfolio are 5.37%, 3.66% and 5.04% in the first 

subsample, respectively, whereas the analogous figures are 4.27%, 2.63%, 3.37% in the second 

subsample. Furthermore, in these two panels, the pollution premium does not exhibit any 

statistical significance during the second subsample. To summarize, whether the pollution 

premium became more pronounced over time as investor and corporate awareness heightened 

about environmental issues is dependent on how emission intensity is empirically defined.19 

  

3.4 Portfolio characteristics 

 Having identified a significant return difference between firms that have higher and lower 

scaled emissions with respect to their industry peers, we also want to understand what type of 

firm characteristics are associated with the highest and lowest polluters. This is important 

because if emission intensity is positively correlated with some characteristics that have a 

positive relation with subsequent returns, it is possible that the pollution premium is simply 

capturing an already established anomaly. On the other hand, if emission intensity is negatively 

correlated with some characteristics that have a positive relation with subsequent returns, it may 

be the case that an already established anomaly is partially subsuming the pollution premium.  

 
19 After this point in the paper, we scale total toxic emissions by total assets to calculate emission intensity. Results for 

all subsequent analyses are qualitatively robust for the other scaling variables. 
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 Table 5 demonstrates that there are significant differences in several firm characteristics 

between high- versus low-emission intensity quintiles. In particular, compared to stocks with low 

scaled emissions, high-emission intensity stocks have higher past month returns, momentum, 

idiosyncratic volatility and lottery-like payoffs, and lower market capitalizations, book-to-market 

ratios and liquidity. Prior literature finds that these firm characteristics are instrumental in 

determining the cross-section of expected equity returns. Specifically, smaller and less liquid 

firms with higher momentum returns tend to have higher future returns, hence, it is possible that 

these return predictors drive the pollution premium. On the other hand, growth firms with higher 

past one month returns, idiosyncratic volatility and lottery demands tend to have lower future 

returns, hence, these return predictors may be masking the strength of the positive relation 

between emission intensity and future returns. Thus, in the subsequent two sections, we control 

for these return predictors via bivariate sorts and multivariate Fama-Macbeth regressions. 

 

3.5 Bivariate portfolio sorts 

In the bivariate portfolio analyses, we sort stocks into two groups based on the median 

value for each control variable within each industry-month. Next, each of these two groups is 

sorted into quintiles based on emission intensity to generate 2x5 portfolios within each industry. 

Subsequently, we aggregate the emission intensity-sorted portfolios across industries and control 

variable groups to obtain portfolios that display dispersion in emission intensity but are similar 

in terms of other firm characteristics. In addition, we again form an arbitrage portfolio that is 

long in the resulting high-emission intensity portfolio and short in the resulting low-emission 

intensity portfolio. 

Table 6 presents annualized FF6PS and Q5PS alphas for the return difference between 

the high- and low-emission intensity portfolios obtained after dependent bivariate sorts. One can 

observe that, after controlling for most of the firm characteristics, abnormal returns to the 

arbitrage portfolio become statistically insignificant. In fact, for Q5PS alphas, the arbitrage 

portfolio generates significantly positive abnormal returns (at the 10% level) after controlling for 

market beta, coskewness, idiosyncratic volatility and operating profit. For all other firm 

characteristics, the alpha spread between extreme emission intensity quintiles is statistically 

indistinguishable from zero. However, we would like to advise the reader to interpret these 

findings with caution. Our bivariate sorts can be interpreted as trivariate sorts (just as earlier 
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univariate sorts can be interpreted as bivariate sorts) since the initial sorting is done based on 

industries. As a result, each of the 2x5 portfolios within each industry individually are not as 

diversified and well-populated as the ones that would have been obtained without initial industry 

sorting. Therefore, the loss of predictive power of emission intensity for future equity returns can 

be due to the reduced power of bivariate sorts conducted within industries. 

 

3.6 Cross-sectional regressions 

 Portfolio analyses suffer from the aggregation effect due to suppressing individual firm-

level information in the cross-section and cannot control for the potential impact of multiple firm 

characteristics simultaneously. To mitigate these problems, we run Fama-MacBeth regressions at 

the stock level by regressing annualized monthly stock returns from October of year t to 

September of year t+1 on emission intensity in natural logarithm of year t-1 (which is reported 

in September of year t) and different sets of control variables. Table 7 presents the time-series 

average of the monthly slope coefficients.  

The left-hand side of Table 7 also includes industry fixed-effects in the specifications 

following Hsu et al. (2023). In the univariate specification, emission intensity has a slope 

coefficient of 0.550 with a t-statistic of 3.56. Next, we add market beta and one-month-lagged 

return to the specification and emission intensity continues to have a positive relation with future 

returns with a slope coefficient of 0.560 and a t-statistic of 3.60. Adding more firm characteristics 

among the independent variables reduces the slope coefficient of emission intensity, but it is still 

highly significant in the full specification with a slope coefficient of 0.427 and a t-statistic of 

2.79.20 

 One lingering issue is the usage of industry fixed-effects in the estimations. Aswani et al. 

(2024a) find that, in the U.S., there is a significantly positive relation between the level of carbon 

emissions and future equity returns only if industry fixed-effects are included. Moreover, even 

the choice of industry definitions used to implement industry fixed-effects has a material impact 

on findings. Furthermore, in Europe, carbon emission intensity can positively predict future 

returns, but this time, only in the absence of industry fixed-effects. Although the authors do not 

 
20 We estimate these regressions by adding one control variable at a time, however, only report results from selected 

specifications to conserve space. Emission intensity always has a significantly positive coefficient in regressions that 

incorporate industry fixed-effects. 
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take a stance on the correct set of fixed effects, these findings highlight the importance of 

empirical design choice.  

An important difference between the econometric specification used in Aswani et al. 

(2024a) and what we implement following Hsu et al. (2023) is that we estimate Fama-MacBeth 

cross-sectional regressions rather than panel regressions. The usage of various fixed effects is 

standard practice in corporate finance studies, but it is uncommon in asset pricing studies that 

focus on cross-sectional anomalies. Thus, we proceed to re-estimate the prior specifications 

without industry fixed-effects. The univariate specification in the right-hand side of Table 7 

shows that emission intensity continues to have a significantly positive coefficient although its 

magnitude and statistical significance diminishes. Adding market beta and one-month-lagged 

return does not neutralize the predictive power of emission intensity, however, including more 

control variables does. The coefficient of emission intensity is statistically indistinguishable from 

zero in the last three specifications reported in Table 7. In fact, although unreported, adding only 

firm size to market beta and one-month-lagged return is sufficient to render the coefficient of 

emission intensity insignificant. Incorporating industry fixed-effects adjusts for the impact of 

industry-specific and time-invariant unobservable variables on the regressand. Econometrically, 

it is equivalent to demeaning each variable at the industry level and estimating the regressions. 

Thus, multivariate regressions of this section indicate that firms’ emission intensities with respect 

to their industry peers have a significantly positive relation with their future returns with respect 

to their industry peers, a finding which is reminiscent of the differences between within- and 

across-industry sorts conducted in Tables 1 and 2. 

 

3.7 Costly arbitrage, informational frictions and mispricing 

A positive relation between emission intensity and future returns can also be interpreted 

in the sense that investors underprice (overprice) equities with higher (lower) emission intensity, 

and thus, firms with higher (lower) scaled emissions experience abnormally high (low) returns 

until the mispricing vanishes. The prior literature relies on firm size, illiquidity and firm age to 

capture arbitrage costs (Shleifer and Vishny, 1997; Amihud, 2002; Stambaugh et al.; 2015). Thus, 

to test whether limits-to-arbitrage can provide an explanation for the pollution premium, we first 

sort stocks into two groups within each industry based on Size, Illiq or AGE. Next, we divide 

each size, illiquidity and age group into quintiles based on emission intensity to generate 2x5 
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portfolios within each industry. Subsequently, we aggregate across industries to obtain 2x5 

portfolios of costly arbitrage and emission intensity for the overall sample. Finally, we calculate 

the return to the arbitrage portfolio that is long (short) in stocks with high (low) emission intensity 

for each size, illiquidity and age group. Results are presented in Table 8.21 We find that the 

abnormal return difference between the highest and lowest scaled emission quintiles is 

statistically insignificant within smaller, less liquid and more mature firms. To the contrary, 

annualized alpha spreads are equal to 6.36%, 6.24% and 10.32% with t-statistics of 2.57, 2.55 

and 2.13 within larger, more liquid and younger firms, respectively. These findings present a 

mixed picture since the pollution premium is stronger for larger and more liquid firms that are 

subject to lower arbitrage costs, but also stronger for younger firms which are subject to higher 

arbitrage costs. It is also important to highlight that, in all the stock subsamples we have examined 

up to this point, any observed pollution premium is driven by the short legs of the arbitrage 

portfolio. Portfolio characteristics as reported in Table 5 suggest that the short leg of the arbitrage 

portfolio (stocks with lower emission intensity) contain, on average, larger and more liquid 

stocks. Since short-selling such stocks is relatively easier, limits-to-arbitrage does not seem to 

have a prominent role in explaining the pollution premium.  

Another interpretation of the pollution premium is related to informational frictions. If 

firms’ toxic emissions relative to their industry peers constitute less tangible information 

compared to those released in well-defined information events such as earnings announcements, 

investors would have more difficulty in processing this information as argued by Hirshleifer et 

al. (2013). This would imply that the pollution premium would be more pronounced among 

stocks with higher information uncertainty. We proxy for such frictions using institutional 

ownership ratio and repeat the previous bivariate sorts using this ratio as the initial sorting 

variable. Table 8 shows that the alpha spread between extreme emission intensity quintiles is only 

significantly positive among stocks with higher institutional ownership which does not lend 

support to an explanation based on the information channel. Two other firm characteristics that 

have been used to proxy for informational frictions in the literature are firm size and analyst 

coverage. We have already seen that the pollution premium is stronger among larger firms. 

Furthermore, bivariate sorts of Table 7 indicate that the alpha spread between firms with high- 

 
21 We only report Q5PS alphas in this table to conserve space, however, FF6PS alphas produce qualitatively similar 

results. 
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and low-emission intensity is only significantly positive among firms with higher analyst 

following. These findings render an information-based story an unlikely culprit for the pollution 

premium. 

Finally, we entertain the alternative explanation that, if stocks with high (low) emission 

intensity are relatively underpriced (overpriced), the arbitrage strategy that is long (short) in 

stocks with high (low) emission intensity boils down to industry pairs-trading that aims to profit 

from a certain mispricing within an industry. To test this conjecture, we conduct bivariate sorts 

using the mispricing measure (MISP) of Stambaugh et al. (2017) as the initial sorting variable. 

The final set of results in Table 8 do not provide evidence in favor of this hypothesis since the 

alpha spread between extreme scaled emission quintiles is significantly positive only among 

stocks that are less likely to be mispriced. 

 

3.8 Earnings surprises 

 Although bivariate sorts of the prior section do not provide evidence for a mispricing-

based story for the pollution premium, we now approach this question from a different avenue. 

A risk-based explanation for the pollution premium assumes that realized returns are a good 

proxy for expected returns, and thus, the cost of capital. However, a large literature on ESG 

investing uses realized abnormal returns as a measure of unexpected returns, and thus, mispricing 

rather than risk (Gompers et al., 2003; Fornell et al., 2006; Edmans, 2011; Lins et al., 2017). 

Practitioners also interpret the high alpha to certain ESG strategies as evidence that ESG is good 

for firm value and underpriced by the market, rather than bad for firm value and exposing 

companies to excessive risk. A standard way used by the literature to disentangle risk from 

mispricing is to study future earnings surprises (La Porta et al., 1997; Core et al., 2006).  

If firms with higher emission intensities enjoy positive earnings surprises, one can think 

of at least two mispricing-based reasons. First, some companies may be focusing on long-term 

shareholder value and view toxic emissions as an externality that they do not have to pay for due 

to doubts about government intervention. Such firms do not spend resources to curb their 

emissions, deliver higher earnings and investors respond positively to these higher earnings since 

they also have doubts about government action. Second, some managers may suffer from short-

termism and underinvest in emissions reduction compared to the level that would maximize long-

term value. If investors are similarly myopic, they would respond positively to higher earnings. 
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Under both explanations, the market would not be fully pricing in risks related to environmental 

policy uncertainty. 

We test this hypothesis by estimating pooled panel regressions of various earnings 

surprise metrics on contemporaneous or lagged emission intensity. We cluster all standard errors 

at the industry and year level, and all specifications include industry- and year-fixed effects. 

Panels A, B and C of Table 9 present results for specifications where the dependent variable is 

one-year earnings surprise (SUE1), two-year earnings surprise (SUE2) and long-term growth 

surprise (LTG), respectively. Findings indicate that neither contemporaneous nor lagged emission 

intensity has a statistically significant slope coefficient in the presence or absence of control 

variables in any panel. In other words, companies with higher emission intensities do not enjoy 

more positive earnings surprises which precludes the conjecture that the pollution premium is 

driven by mispricing tied to investors’ responses to favorable earnings news.22 

 

3.9 Divestment 

 Another possible explanation for the pollution premium is that socially responsible or 

ethical investors treat stocks of firms with high emission intensities as “sin stocks” (Fabozzi et 

al., 2008; Hong and Kacperczyk, 2009). Sustainable investment policies implemented by 

institutional investors may result in underdiversification due to divestment and exclusionary 

screening of stocks with higher scaled emissions. As a result, risk sharing would be limited, 

idiosyncratic risk would rise and, if the extent of such divestment is high, significant pricing 

effects could be observed. We test this conjecture by looking at the portfolio holdings of 

institutional investors and estimate a pooled regression model where the dependent variable is 

institutional ownership ratio, and the independent variable of interest is emission intensity. All 

standard errors are clustered at the industry and year level, and all specifications include year-

month-fixed effects. Moreover, we try specifications where we include and exclude industry 

fixed-effects and/or the full set of control variables detailed earlier.  

 Results are presented in Table 10. In the first set of regressions, we use the aggregate 

institutional ownership ratio (INST) as the dependent variable. The slope coefficient of emission 

intensity is statistically insignificant in all specifications. Next, we disaggregate INST into its 

 
22 Hsu et al. (2023) find that firms with higher emission intensity have significantly higher contemporaneous profits, 

however, they use ROA and do not look at the unexpected component of earnings. 
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components motivated by the fact that the universe of institutional investors pools a number of 

different constituencies with possibly different investor pressures. For example, insurance 

companies and pension funds which have more long-term oriented investments may face higher 

investor pressure to divest from companies with high emission intensities compared to mutual 

funds that are incentivized to also generate short-term performance. Thus, we distribute all 

institutional investors into five categories, namely banks, insurance companies, investment 

companies (such as mutual funds), independent investment advisers and others (such as pension 

funds and hedge funds). For each category, we obtain firm-level institutional ownership ratios 

and estimate the pooled regression model for each of them separately. Table 10 shows that 

emission intensity has a significantly negative coefficient only when the dependent variable is 

institutional ownership by investment companies. In other words, there is some evidence that 

mutual funds are divesting from firms with high emission intensities which could account for 

some of the observed pollution premium. However, the economic effect of this divestment is 

small since, based on the univariate specification with industry fixed-effects, a one-standard-

deviation increase in emission intensity leads to approximately 0.12% decline in ownership by 

investment companies. 

 

4. Conclusion 

 Hsu et al. (2023) find that a long-short portfolio constructed from firms with high versus 

low toxic emission intensity within an industry generates significantly positive average abnormal 

returns. To explain this pollution premium, they propose a novel systematic risk related to 

environmental policy uncertainty and show that regime change risk is instrumental in pricing the 

cross-section of emission intensity portfolios. In our study, we examine the impact of various 

methodological choices and also entertain some alternative hypotheses for the pollution premium 

that are not considered in Hsu et al. (2023). 

 First, pollution premium is strictly an intra-industry phenomenon in the sense that 

investors penalize companies that pollute relatively more than their industry peers. However, 

they do not necessarily demand a return premium for stocks of firms that pollute relatively more 

than companies in other sectors. Second, it is total emissions scaled by proxies of firm size, but 

not the level of or growth in annual emissions that is priced at the cross-section. Third, we do not 

find consistent evidence that pollution premium got stronger during recent years as 
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environmental concerns and potentially regime change risk became more pronounced. Fourth, 

we use an alternative set of control variables that are more standard in asset pricing studies and 

find that the positive relation between emission intensity and future returns is dependent on the 

existence of industry-fixed effects in a multivariate setting. 

 In terms of alternative explanations for the pollution premium, we first consider the 

impact of costly arbitrage and informational frictions. Our findings do not support these channels 

since the pollution premium is stronger among equities that are less subject to limits-to-arbitrage 

and informational uncertainties. Second, we investigate whether companies with high emission 

intensities enjoy higher earnings surprises to test a mispricing-based explanation, however, we 

do not find any supporting evidence. Third, we test whether higher returns to higher emission 

intensity-stocks are due to exclusionary screening and divestment activities of institutional 

investors. Although investment companies such as mutual funds have lower ownership in firms 

with higher scaled emissions, the economic magnitude of this effect is limited. 
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Table 1 

Univariate portfolio sorts 
This table shows average one-month-ahead excess and abnormal returns for quintiles sorted on toxic emission intensity relative to 

industry peers. Emission intensity is defined as raw emissions scaled by total assets in Panel A, by property, plant, and equipment in 

Panel B, by sales in Panel C, and by market equity in Panel D. Raw emissions are measured as the sum of all toxic emissions in pounds 

produced in all plants owned by a firm. We use the Fama and French (1997) 49 industry classifications and rebalance portfolios at the 

end of each September. We also form an arbitrage portfolio that is long in high-emission intensity stocks and short in low-emission 

intensity stocks. The sample runs from October 1992 to September 2022 and excludes financial industries. Portfolio returns are either 

value-weighted by firms’ market capitalization or equal-weighted and are multiplied by 12 to make their magnitudes comparable to 

annualized returns. We report two different alphas. FF6PS is the intercept term from a time-series regression of portfolio returns on the 

market, size, value, profitability and investment factors of Fama and French (2015) augmented by the momentum factor of Carhart 

(1997) and the liquidity factor of Pastor and Stambaugh (2003). Q5PS is the intercept term from a time-series regression of portfolio 

returns on the market, size, profitability, investment and expected growth factors of Hou et al. (2021) augmented by the liquidity factor 

of Pastor and Stambaugh (2003). t-statistics are based on standard errors using the Newey-West correction for 12 lags. 

 
 Value-Weighted  Equal-Weighted 

 L 2 3 4 H H-L  L 2 3 4 H H-L 

 Panel A: Assets 

Return 5.77 8.91 8.55 8.33 11.91 6.13  12.45 10.69 11.64 14.09 16.65 4.19 

 (1.76) (2.73) (2.66) (2.59) (3.17) (2.64)  (3.58) (2.95) (2.90) (3.95) (4.34) (3.79) 

FF6PS -2.83 1.48 -1.36 -2.28 0.64 3.47  0.62 -0.36 -0.03 2.29 4.41 3.79 

 (-1.74) (0.96) (-0.94) (-1.33) (0.46) (2.04)  (0.56) (-0.25) (-0.02) (1.90) (3.12) (3.49) 

Q5PS -2.84 0.85 -2.92 -3.70 3.07 5.91  0.37 -0.73 0.12 1.55 4.68 4.31 

 (-1.78) (0.51) (-2.15) (-2.08) (1.34) (2.55)  (0.22) (-0.42) (0.06) (0.91) (2.54) (3.85) 

 Panel B: Plant, Property, Equipment 

Return 5.16 9.34 10.68 9.44 9.96 4.80  11.97 11.73 11.98 14.00 15.87 3.91 

 (1.55) (2.91) (3.48) (2.26) (3.43) (3.25)  (3.49) (3.11) (3.06) (3.75) (4.36) (3.63) 

FF6PS -3.03 1.45 1.11 -2.83 0.00 3.03  0.18 0.28 0.31 2.58 3.61 3.44 

 (-1.77) (0.89) (0.70) (-1.62) (0.00) (1.74)  (0.17) (0.21) (0.20) (1.83) (2.87) (3.03) 

Q5PS -2.95 0.61 -1.06 -2.41 0.70 3.65  0.17 0.35 -0.25 2.04 3.71 3.54 

 (-1.74) (0.39) (-0.73) (-0.83) (0.66) (1.95)  (0.10) (0.22) (-0.13) (1.14) (2.17) (3.02) 

 Panel C: Sales 

Return 5.10 9.79 9.13 8.44 11.10 6.00  12.40 10.99 12.35 13.57 16.22 3.82 

 (1.56) (2.86) (2.72) (2.62) (3.00) (2.59)  (3.55) (3.04) (3.17) (3.74) (4.15) (3.24) 

FF6PS -3.40 2.76 -1.30 -2.16 0.45 3.85  0.55 0.08 0.67 1.37 4.28 3.73 

 (-2.04) (1.45) (-0.90) (-1.15) (0.32) (2.08)  (0.54) (0.05) (0.50) (1.11) (2.94) (3.33) 

Q5PS -3.18 2.10 -2.85 -3.13 2.20 5.37  0.53 -0.22 0.12 0.96 4.62 4.08 

 (-1.98) (1.14) (-2.20) (-1.71) (1.00) (2.19)  (0.33) (-0.13) (0.06) (0.53) (2.53) (3.60) 

 Panel D: Market Value of Equity 

Return 5.04 10.65 8.51 12.76 9.65 4.61  11.31 11.03 11.84 13.95 17.65 6.34 

 (1.48) (3.64) (2.67) (3.08) (3.27) (2.57)  (3.48) (3.16) (3.16) (3.63) (4.09) (3.81) 

FF6PS -2.31 1.35 -1.93 -0.50 -0.13 2.18  0.23 -0.49 0.21 2.47 4.59 4.36 

 (-1.29) (1.02) (-1.25) (-0.33) (-0.09) (1.22)  (0.24) (-0.35) (0.16) (1.75) (2.82) (3.03) 

Q5PS -2.70 0.06 -3.73 0.86 0.87 3.57  -0.15 -1.24 0.35 1.60 5.64 5.79 

 (-1.60) (0.04) (-1.99) (0.30) (0.74) (2.20)  (-0.11) (-0.68) (0.20) (0.88) (2.65) (3.85) 
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Table 2 

Univariate portfolio sorts across industries 
This table shows average one-month-ahead excess and abnormal returns for quintiles sorted on toxic emission intensity relative to all 

sample firms. Emission intensity is defined as raw emissions scaled by total assets in Panel A, by property, plant, and equipment in 

Panel B, by sales in Panel C, and by market equity in Panel D. Raw emissions are measured as the sum of all toxic emissions in pounds 

produced in all plants owned by a firm. We rebalance portfolios at the end of each September. We also form an arbitrage portfolio that 

is long in high-emission intensity stocks and short in low-emission intensity stocks. The sample runs from October 1992 to September 

2022 and excludes financial industries. Portfolio returns are either value-weighted by firms’ market capitalization or equal-weighted 

and are multiplied by 12 to make their magnitudes comparable to annualized returns. We report two different alphas. FF6PS is the 

intercept term from a time-series regression of portfolio returns on the market, size, value, profitability and investment factors of Fama 

and French (2015) augmented by the momentum factor of Carhart (1997) and the liquidity factor of Pastor and Stambaugh (2003).  

Q5PS is the intercept term from a time-series regression of portfolio returns on the market, size, profitability, investment and expected 

growth factors of Hou et al. (2021) augmented by the liquidity factor of Pastor and Stambaugh (2003). t-statistics are based on standard 

errors using the Newey-West correction for 12 lags. 

 
 Value-Weighted  Equal-Weighted 

 L 2 3 4 H H-L  L 2 3 4 H H-L 

 Panel A: Assets 

Return 6.39 7.93 9.21 10.95 9.42 3.03  12.47 12.16 11.89 13.43 15.34 2.87 

 (1.92) (2.36) (2.65) (2.82) (3.10) (1.70)  (3.62) (3.42) (3.06) (3.86) (3.50) (1.44) 

FF6PS -2.21 0.65 -0.33 -0.94 -1.50 0.71  1.13 1.09 0.84 1.70 1.95 0.81 

 (-1.38) (0.38) (-0.23) (-0.55) (-1.13) (0.41)  (0.93) (0.87) (0.52) (1.35) (1.10) (0.45) 

Q5PS -2.18 -1.01 -1.97 -0.08 0.08 2.26  0.56 0.76 -0.76 2.07 3.12 2.55 

 (-1.33) (-0.60) (-1.19) (-0.03) (0.05) (1.06)  (0.36) (0.45) (-0.36) (1.24) (1.30) (1.33) 

 Panel B: Plant, property, equipment 

Return 6.16 8.59 10.76 8.53 10.09 3.93  12.73 10.81 12.66 14.04 15.07 2.34 

 (1.97) (2.39) (3.03) (2.49) (3.14) (2.14)  (3.87) (3.09) (3.38) (3.52) (3.66) (1.37) 

FF6PS -1.79 1.07 0.81 -3.30 -1.71 0.08  1.22 0.57 1.31 1.88 1.76 0.54 

 (-1.07) (0.72) (0.66) (-1.81) (-1.23) (0.04)  (1.12) (0.40) (1.03) (1.31) (1.17) (0.36) 

Q5PS -1.73 -0.90 0.32 -2.90 -0.28 1.45  0.88 -0.39 0.41 2.79 2.10 1.22 

 (-1.07) (-0.58) (0.18) (-1.29) (-0.20) (0.68)  (0.56) (-0.21) (0.23) (1.56) (1.03) (0.77) 

 Panel C: Sales 

Return 5.62 9.66 10.13 12.18 8.01 2.39  13.04 12.13 12.31 13.20 14.59 1.56 

 (1.79) (2.85) (2.93) (2.92) (2.99) (1.39)  (3.64) (3.30) (3.12) (3.84) (3.55) (0.80) 

FF6PS -3.35 0.78 0.65 -0.24 -1.38 1.97  1.46 1.07 0.63 1.47 2.08 0.63 

 (-2.00) (0.55) (0.39) (-0.13) (-1.16) (1.16)  (1.15) (0.73) (0.44) (1.13) (1.27) (0.35) 

Q5PS -4.25 1.43 -2.47 0.81 -0.49 3.76  1.11 1.07 -1.26 1.70 3.11 2.01 

 (-2.36) (0.89) (-1.48) (0.27) (-0.45) (1.94)  (0.66) (0.61) (-0.64) (1.05) (1.34) (1.05) 

 Panel D: Market value of equity 

Return 5.55 10.29 12.28 9.04 11.69 6.14  11.40 12.35 12.29 13.03 16.25 4.85 

 (1.70) (2.94) (2.95) (3.29) (3.95) (2.21)  (3.63) (3.50) (3.06) (3.76) (3.49) (2.10) 

FF6PS -1.63 1.17 -1.60 -0.94 0.22 1.85  1.08 1.17 0.39 0.89 3.16 2.09 

 (-0.98) (0.81) (-0.74) (-0.73) (0.13) (0.93)  (1.03) (0.93) (0.24) (0.72) (1.66) (1.11) 

Q5PS -2.00 -0.93 -1.63 -0.40 0.65 2.65  0.74 0.22 -0.95 0.74 5.01 4.27 

 (-1.22) (-0.64) (-0.50) (-0.32) (0.33) (1.16)  (0.52) (0.14) (-0.49) (0.43) (1.91) (2.05) 
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Table 3 

Level of and growth in emissions  

This table shows average one-month-ahead excess and abnormal returns for quintiles sorted on the level of raw emissions in Panel A 

and annual percentage growth in raw emissions in Panel B relative to industry peers. Raw emissions are measured as the sum of all 

toxic emissions in pounds produced in all plants owned by a firm. We use the Fama and French (1997) 49 industry classifications and 

rebalance portfolios at the end of each September. We also form an arbitrage portfolio that is long in stocks with high emission levels 

or growths and short in stocks with low emission levels or growths. The sample runs from October 1992 to September 2022 and excludes 

financial industries. Portfolio returns are either value-weighted by firms’ market capitalization or equal-weighted and are multiplied by 

12 to make their magnitudes comparable to annualized returns. We report two different alphas. FF6PS is the intercept term from a time-

series regression of portfolio returns on the market, size, value, profitability and investment factors of Fama and French (2015) 

augmented by the momentum factor of Carhart (1997) and the liquidity factor of Pastor and Stambaugh (2003). Q5PS is the intercept 

term from a time-series regression of portfolio returns on the market, size, profitability, investment and expected growth factors of Hou 

et al. (2021) augmented by the liquidity factor of Pastor and Stambaugh (2003). t-statistics are based on standard errors using the Newey-

West correction for 12 lags. 

 
 Value-Weighted  Equal-Weighted 

 L 2 3 4 H H-L  L 2 3 4 H H-L 

 Panel A: Level of emissions 

Return 6.80 4.94 9.47 8.86 9.87 3.06  12.95 12.73 13.41 13.07 13.13 0.19 

 (2.62) (1.70) (2.78) (2.91) (2.67) (1.15)  (3.49) (3.34) (3.60) (3.59) (3.52) (0.14) 

FF6PS -1.91 -4.12 0.79 -0.28 -0.38 1.52  1.76 1.16 2.14 0.95 0.60 -1.16 

 (-1.11) (-2.24) (0.33) (-0.19) (-0.29) (0.79)  (1.49) (0.79) (1.62) (0.59) (0.49) (-0.90) 

Q5PS -1.35 -5.08 -0.08 -0.25 -0.85 0.50  2.37 0.99 1.20 0.20 0.83 -1.54 

 (-0.78) (-2.47) (-0.04) (-0.18) (-0.47) (0.20)  (1.44) (0.55) (0.66) (0.10) (0.48) (-1.12) 

 Panel B: Growth in emissions 

Return 5.45 7.85 7.16 9.47 11.47 6.02  10.83 12.33 13.50 14.02 12.20 1.37 

 (1.66) (2.09) (2.18) (2.64) (3.01) (1.72)  (2.82) (3.39) (3.42) (3.98) (3.04) (1.05) 

FF6PS -3.19 -1.56 -1.62 0.89 -0.40 2.79  -0.15 0.05 1.34 2.74 0.60 0.75 

 (-1.82) (-0.81) (-0.94) (0.53) (-0.20) (0.99)  (-0.10) (0.04) (1.01) (2.24) (0.40) (0.48) 

Q5PS -2.96 -2.82 -1.70 -0.25 1.16 4.12  0.20 -0.03 1.30 1.98 0.98 0.78 

 (-1.54) (-1.46) (-0.97) (-0.17) (0.41) (1.15)  (0.11) (-0.02) (0.71) (1.20) (0.51) (0.48) 
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Table 4 

Subperiod analysis 
This table shows average one-month-ahead value-weighted excess and abnormal returns for quintiles sorted on toxic emission intensity 

relative to industry peers. Emission intensity is defined as raw emissions scaled by total assets in Panel A, by property, plant, and 

equipment in Panel B, by sales in Panel C, and by market equity in Panel D. Raw emissions are measured as the sum of all toxic 

emissions in pounds produced in all plants owned by a firm. We use the Fama and French (1997) 49 industry classifications and 

rebalance portfolios at the end of each September. We also form an arbitrage portfolio that is long in high-emission intensity stocks and 

short in low-emission intensity stocks. The sample runs from October 1992 to September 2022 and excludes financial industries. We 

report separate results for the subsample between 1992 and 2006, and the subsample between 2007 and 2022. Portfolio returns are 

multiplied by 12 to make their magnitudes comparable to annualized returns. We report two different alphas. FF6PS is the intercept 

term from a time-series regression of portfolio returns on the market, size, value, profitability and investment factors of Fama and French 

(2015) augmented by the momentum factor of Carhart (1997) and the liquidity factor of Pastor and Stambaugh (2003). Q5PS is the 

intercept term from a time-series regression of portfolio returns on the market, size, profitability, investment and expected growth factors 

of Hou et al. (2021) augmented by the liquidity factor of Pastor and Stambaugh (2003). t-statistics are based on standard errors using 

the Newey-West correction for 12 lags. 

 
 1992-2006  2007-2022 

 L 2 3 4 H H-L  L 2 3 4 H H-L 

 Panel A: Assets 

Return 5.82 8.35 7.07 6.82 9.56 3.75  5.73 9.41 9.89 9.71 14.04 8.31 

 (1.46) (1.61) (1.67) (1.61) (2.58) (2.27)  (1.13) (2.32) (2.08) (2.04) (2.23) (2.03) 

FF6PS -1.58 5.30 -2.59 -2.97 0.72 2.30  -2.67 0.32 0.42 0.27 2.54 5.21 

 (-1.02) (2.24) (-1.14) (-1.18) (0.49) (1.35)  (-1.06) (0.19) (0.24) (0.16) (1.04) (1.80) 

Q5PS -2.60 -0.53 -5.50 -6.80 0.87 3.47  -2.53 0.40 -0.61 -0.21 6.35 8.88 

 (-1.43) (-0.17) (-3.01) (-2.46) (0.51) (2.02)  (-1.12) (0.23) (-0.36) (-0.13) (1.81) (2.29) 

 Panel B: Plant, property, equipment 

Return 4.58 10.50 11.09 4.82 9.95 5.37  5.69 8.28 10.32 13.64 9.96 4.27 

 (1.10) (2.21) (2.83) (1.11) (2.57) (3.11)  (1.12) (1.91) (2.22) (2.02) (2.32) (1.82) 

FF6PS -1.78 6.69 -0.03 -4.61 1.88 3.66  -2.66 -1.00 2.09 1.41 -0.03 2.63 

 (-0.90) (2.44) (-0.01) (-2.10) (1.11) (1.56)  (-1.04) (-0.67) (0.92) (0.56) (-0.02) (1.04) 

Q5PS -3.16 1.75 -4.22 -8.22 1.87 5.04  -2.59 -0.99 0.67 4.11 0.77 3.37 

 (-1.64) (0.61) (-1.74) (-3.48) (0.87) (1.89)  (-1.09) (-0.72) (0.30) (1.19) (0.59) (1.28) 

 Panel C: Sales 

Return 4.95 9.59 10.28 5.57 9.08 4.13  5.23 9.97 8.09 11.05 12.94 7.71 

 (1.27) (1.70) (2.16) (1.43) (2.35) (2.61)  (1.01) (2.46) (1.71) (2.24) (2.12) (1.87) 

FF6PS -2.27 7.67 -0.75 -3.88 0.51 2.78  -3.03 0.98 -1.49 1.55 1.85 4.88 

 (-1.44) (2.63) (-0.32) (-1.50) (0.33) (1.47)  (-1.16) (0.59) (-0.85) (0.80) (0.70) (1.50) 

Q5PS -2.85 1.70 -4.14 -6.99 0.53 3.38  -3.02 1.06 -2.15 1.24 4.96 7.98 

 (-1.53) (0.52) (-1.84) (-2.60) (0.31) (1.91)  (-1.27) (0.61) (-1.25) (0.73) (1.42) (1.96) 

 Panel D: Market value of equity 

Return 5.27 11.94 6.24 9.24 11.33 6.06  4.83 9.47 10.58 15.96 8.12 3.29 

 (1.17) (2.81) (1.62) (2.46) (3.05) (2.18)  (0.95) (2.36) (2.15) (2.27) (1.81) (1.45) 

FF6PS 1.29 2.16 -4.18 -0.94 1.00 -0.29  -3.63 1.21 0.98 3.17 -0.90 2.73 

 (0.59) (1.18) (-1.88) (-0.45) (0.55) (-0.12)  (-1.49) (0.75) (0.67) (1.36) (-0.50) (1.24) 

Q5PS -2.03 -1.42 -8.23 -4.27 2.08 4.11  -3.80 0.74 0.49 6.81 -0.29 3.51 

 (-1.05) (-0.63) (-3.20) (-1.80) (1.23) (1.87)  (-1.64) (0.43) (0.30) (1.72) (-0.19) (1.60) 
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Table 5 

Portfolio characteristics 
This table reports the time-series average of the cross-sectional means of various control variables for quintiles 

sorted on toxic emission intensity relative to industry peers. Emission intensity is defined as raw emissions scaled 

by total assets. Raw emissions are measured as the sum of all toxic emissions in pounds produced in all plants 

owned by a firm. We use the Fama and French (1997) 49 industry classifications and rebalance portfolios at the 

end of each September. We also form an arbitrage portfolio that is long in high-emission intensity stocks and short 

in low-emission intensity stocks. The sample runs from October 1992 to September 2022 and excludes financial 

industries. Beta is the market beta of each stock with respect to the value-weighted market index calculated from 

daily returns during the past year. STR is the return of a stock in the previous month. Size is the logarithm of market 

value of equity. BM is the ratio of the book value of equity to the market value of equity. MOM is the cumulative 

return of a stock during the past 11 months after skipping one month. Illiq is Amihud’s illiquidity ratio calculated 

as the absolute daily return of a stock divided by its daily dollar trading volume (in millions) averaged over the 

month. Coskew is the co-skewness calculated as the coefficient of the squared excess market return term from a 

regression of the daily excess returns of a stock on the daily excess market returns and the squared daily excess 

market returns in the past year. IVOL is the standard deviation of error terms calculated from the application of the 

three-factor model of Fama and French (1993) to daily stock returns within a month. MAX is the average of the 

five highest daily returns of each stock in each month. OP is the ratio of earnings before interest and taxes to 

shareholders' equity. IA is the annual growth rate of total assets. 

 
 L 2 3 4 H H-L t-stat 

Emission Int. 39.61  253.69  923.28  2,835.18  23,151.24  23,111.62  (6.08) 

Beta 1.00  0.99  1.05  1.01  1.01  0.01  (0.99) 

STR 1.16  1.08  1.14  1.31  1.56  0.40  (4.76) 

Size 14.32  14.08  14.28  14.24  13.86  -0.47  (-11.56) 

BM 0.76  0.78  0.71  0.75  0.68  -0.08  (-2.67) 

MOM 13.16  12.11  13.41  15.97  19.07  5.91  (5.29) 

Illiq 0.70  1.09  1.95  1.31  1.50  0.80  (1.94) 

Coskew -1.92  -1.49  -0.93  -1.83  -1.49  0.43  (1.27) 

IVOL 1.99  2.05  2.08  2.00  2.11  0.12  (5.04) 

MAX 2.99  3.06  3.13  3.02  3.17  0.19  (5.89) 

OP 0.00  0.02  0.14  0.02  0.02  0.02  (0.99) 

IA 0.10  0.11  0.10  0.10  0.10  -0.01  (-0.79) 
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Table 6 

Bivariate portfolio sorts 
This table shows average one-month-ahead value-weighted abnormal returns for bivariate portfolios sorted on toxic emission intensity and 

various control variables. Emission intensity is defined as raw emissions scaled by total assets. Raw emissions are measured as the sum of 

all toxic emissions in pounds produced in all plants owned by a firm. We use the Fama and French (1997) 49 industry classifications and 

rebalance portfolios at the end of each September. The sample runs from October 1992 to September 2022 and excludes financial industries. 

Each month, within each industry, stocks are sorted into two groups based on the median value for various control variables that are defined 

in Table 5. Next, each group of stocks is sorted into quintiles based on emission intensity to generate 2×5 portfolios within each industry. 

Subsequently, we aggregate each of the emission intensity-sorted portfolios across industries and the two control variable groups producing 

portfolios with dispersion in emission intensity that are similar in terms of the control variables. In addition, we form an arbitrage portfolio 

that is long in the resulting high-emission intensity portfolio and short in the resulting low-emission intensity portfolio. We report two 

different alphas which are multiplied by 12 to make their magnitudes comparable to annualized alphas. FF6PS is the intercept term from a 

time-series regression of portfolio returns on the market, size, value, profitability and investment factors of Fama and French (2015) 

augmented by the momentum factor of Carhart (1997) and the liquidity factor of Pastor and Stambaugh (2003). Q5PS is the intercept term 

from a time-series regression of portfolio returns on the market, size, profitability, investment and expected growth factors of Hou et al. 

(2021) augmented by the liquidity factor of Pastor and Stambaugh (2003). t-statistics are based on standard errors using the Newey-West 

correction for 12 lags. 

 
 FF6PS  Q5PS 

 L 2 3 4 H H-L  L 2 3 4 H H-L 

Beta -1.63 -0.59 -0.69 -1.11 -0.07 1.56  -2.07 -1.24 -1.74 -2.40 1.76 3.83 

 (-1.03) (-0.37) (-0.54) (-0.64) (-0.05) (0.84)  (-1.31) (-0.79) (-1.28) (-1.40) (1.01) (1.97) 

STR -1.30 0.18 1.68 -3.06 -0.70 0.60  -2.13 0.04 -0.22 -3.45 0.49 2.62 

 (-0.81) (0.12) (1.16) (-1.67) (-0.49) (0.35)  (-1.45) (0.03) (-0.20) (-1.58) (0.35) (1.60) 

Size -0.97 0.24 -0.67 -1.21 0.17 1.13  -0.92 0.63 -2.00 -2.49 -0.06 0.85 

 (-0.79) (0.17) (-0.56) (-1.01) (0.11) (0.71)  (-0.67) (0.48) (-1.51) (-1.79) (-0.04) (0.49) 

BM -1.49 0.36 -1.00 -2.46 -1.11 0.38  -1.76 0.08 -2.67 -3.51 -1.02 0.74 

 (-1.02) (0.20) (-0.60) (-1.63) (-0.87) (0.26)  (-1.10) (0.05) (-1.46) (-1.95) (-0.61) (0.42) 

MOM -2.06 3.01 -2.03 -0.26 -0.59 1.47  -2.43 3.03 -3.14 -1.63 0.06 2.49 

 (-1.35) (1.49) (-1.55) (-0.16) (-0.41) (0.90)  (-1.66) (1.80) (-2.35) (-0.86) (0.04) (1.49) 

Illiq -1.22 0.20 -1.69 -1.16 0.52 1.75  -1.34 0.38 -3.15 -2.24 0.93 2.27 

 (-0.98) (0.14) (-1.36) (-0.78) (0.38) (1.12)  (-0.94) (0.29) (-1.90) (-1.39) (0.55) (1.30) 

Coskew -2.94 1.55 -0.78 -2.75 0.81 3.74  -3.53 2.02 -1.70 -3.14 1.83 5.35 

 (-1.70) (1.09) (-0.55) (-1.46) (0.64) (2.11)  (-1.87) (1.72) (-1.18) (-1.36) (1.42) (2.96) 

IVOL -3.15 1.87 -1.36 -1.03 -0.03 3.12  -2.99 1.35 -2.34 -0.79 0.55 3.54 

 (-2.16) (0.95) (-0.86) (-0.53) (-0.02) (1.82)  (-2.13) (0.72) (-1.58) (-0.31) (0.38) (1.83) 

MAX -3.16 0.95 0.21 -1.74 -0.60 2.56  -2.56 0.41 -0.94 -2.49 0.25 2.81 

 (-2.03) (0.59) (0.13) (-0.78) (-0.47) (1.33)  (-1.75) (0.23) (-0.59) (-0.89) (0.19) (1.49) 

OP -2.70 -0.38 -1.62 -4.92 0.50 3.21  -2.93 -1.61 -3.53 -4.69 1.15 4.08 

 (-1.83) (-0.29) (-1.18) (-2.95) (0.42) (1.79)  (-2.06) (-1.32) (-2.48) (-1.77) (0.87) (2.23) 

IA -1.85 1.35 -0.51 -2.12 0.51 2.36  -2.22 0.31 -1.57 -3.07 1.15 3.36 

 (-1.17) (0.82) (-0.39) (-1.13) (0.43) (1.44)  (-1.32) (0.22) (-1.24) (-1.48) (0.69) (1.61) 
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Table 7 

Fama-Macbeth regressions 
This table reports Fama-MacBeth regressions of individual stock excess returns on emission intensity in natural logarithm 

and other firm characteristics. Emission intensity is defined as raw emissions scaled by total assets. Raw emissions are 

measured as the sum of all toxic emissions in pounds produced in all plants owned by a firm. We conduct cross-sectional 

regressions for each month from October of year t to September of year t+1. In each month, monthly returns of individual 

stock returns (annualized by multiplying by 12) are regressed on emission intensity in natural logarithm of year t-1 (that is 

reported by the end of September of year t) and different sets of control variables known by the end of September of year t. 

Control variables are defined in Table 5. We estimate the specifications with or without industry fixed-effects based on Fama 

and French (1997) 49-industry classifications. t-statistics are based on standard errors estimated using the Newey-West 

correction with 12 lags. The sample period is from October 1992 to September 2022. 

 
 With industry fixed-effects Without industry fixed-effects 

 1 2 3 4 5 1 2 3 4 5 

Emission 0.550 0.560 0.439 0.457 0.427 0.369 0.367 0.215 0.205 0.175 

 (3.56) (3.58) (2.77) (2.85) (2.79) (1.99) (2.11) (1.26) (1.18) (1.05) 

Beta  -0.463 1.436 1.520 1.685  2.870 4.077 3.990 4.183 

  (-0.21) (0.56) (0.61) (0.67)  (0.92) (1.28) (1.28) (1.35) 

STR  -0.062 -0.042 -0.092 -0.104  -0.042 -0.015 -0.090 -0.109 

  (-0.63) (-0.43) (-0.72) (-0.86)  (-0.43) (-0.16) (-0.73) (-0.94) 

Size   -1.456 -1.120 -1.148   -1.725 -1.439 -1.449 

   (-2.57) (-2.28) (-2.27)   (-2.57) (-2.69) (-2.66) 

BM   1.372 1.113 0.774   1.376 1.093 0.806 

   (1.34) (1.25) (0.84)   (1.50) (1.32) (0.92) 

MOM   -0.040 -0.032 -0.033   -0.037 -0.030 -0.032 

   (-2.00) (-1.78) (-1.93)   (-1.69) (-1.49) (-1.66) 

Illiq    0.016 0.013    0.013 0.011 

    (0.90) (0.73)    (0.82) (0.67) 

Coskew    -0.081 -0.059    -0.080 -0.068 

    (-0.81) (-0.67)    (-0.90) (-0.84) 

IVOL    -2.029 -2.233    -2.244 -2.466 

    (-1.37) (-1.60)    (-1.49) (-1.70) 

MAX    1.449 1.701    1.707 2.011 

    (1.41) (1.72)    (1.64) (1.99) 

OP     -1.920     -2.189 

     (-0.15)     (-0.17) 

IA     -4.268     -2.987 

     (-2.46)     (-1.64) 

Adj R2 0.047 0.072 0.100 0.120 0.127 0.002 0.047 0.082 0.103 0.111 

Obs 111,753    

111,753  

111,735   

111,735  

 103,218   

103,218  

103,216    

103,216  

102,664    

102,664  

111,753    

111,753  

111,735   

111,735  

 103,218   

103,218  

103,216    

103,216  

102,664    

102,664   
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Table 8 

Costly arbitrage, information frictions and mispricing 
This table shows average one-month-ahead value-weighted abnormal returns for bivariate portfolios sorted on toxic 

emission intensity and various firm characteristics that are associated with limits-to-arbitrage, informational frictions 

and mispricing. Emission intensity is defined as raw emissions scaled by total assets. Raw emissions are measured as 

the sum of all toxic emissions in pounds produced in all plants owned by a firm. We use the Fama and French (1997) 

49 industry classifications and rebalance portfolios at the end of each September. Size and Illiq are defined in Table 5. 

AGE is the number of months that a stock has been listed on the CRSP database. INST is institutional ownership ratio, 

calculated by dividing the institutional ownership level computed using equity holdings by institutions that file 13F 

reports divided by total shares outstanding at quarter end. CVRG is the number of analysts covering the stock in the 

I/B/E/S database. MISP is the mispricing measure created by ranking stocks independently based on 11 return anomalies 

in such an order that a higher rank is associated with lower one-month-ahead stock returns, as documented in 

Stambaugh, Yu, and Yuan (2017). The mispricing measure is defined as the arithmetic average of the ranks of the 11 

anomalies with a minimum of five of them available. The sample runs from October 1992 to September 2022 and 

excludes financial industries. Each month, within each industry, stocks are sorted into two groups based on the median 

value for these firm characteristics. Next, each group of stocks is sorted into quintiles based on emission intensity to 

generate 2×5 portfolios within each industry. After aggregating across industries, for both firm characteristic groups, 

we form an arbitrage portfolio that is long in high-emission intensity stocks and short in low-emission intensity stocks. 

We report Q5PS alphas (which are multiplied by 12 to make their magnitudes comparable to annualized alphas) 

calculated as the intercept term from a time-series regression of portfolio returns on the market, size, profitability, 

investment and expected growth factors of Hou et al. (2021) augmented by the liquidity factor of Pastor and Stambaugh 

(2003). t-statistics are based on standard errors using the Newey-West correction for 12 lags. 

 

  L 2 3 4 H H-L 

Size Low 2.04 -2.28 -1.20 -0.60 -0.48 -2.52 

  (0.96) (-1.10) (-0.47) (-0.33) (-0.21) (-1.06) 

 High -3.00 1.20 -3.24 -3.84 3.36 6.36 

  (-1.76) (0.64) (-2.16) (-2.07) (1.34) (2.57) 

Illiq Low -3.00 1.20 -3.00 -3.84 3.24 6.24 

  (-1.79) (0.64) (-2.03) (-2.11) (1.30) (2.55) 

 High 0.96 -3.36 -3.60 0.36 0.72 -0.24 

  (0.46) (-1.50) (-1.35) (0.12) (0.30) (-0.09) 

AGE Low -5.28 0.24 -0.12 -3.12 5.04 10.32 

  (-2.20) (0.09) (-0.07) (-1.11) (1.20) (2.13) 

 High -1.20 1.32 -3.00 -3.36 0.96 2.16 

  (-0.57) (0.62) (-1.75) (-1.88) (0.75) (1.16) 

INST Low -2.04 11.28 -2.04 -3.84 3.00 5.04 

  (-0.93) (0.19) (-0.96) (-2.09) (1.00) (1.55) 

 High -3.48 0.12 -3.00 -2.40 0.60 4.08 

  (-2.03) (0.04) (-1.44) (-1.27) (0.37) (1.85) 

CVRG Low -0.36 -0.24 -3.12 0.72 2.64 3.00 

  (-0.12) (-0.10) (-1.22) (0.31) (1.09) (0.94) 

 High -3.00 1.20 -3.24 -4.20 3.12 6.12 

  (-1.79) (0.61) (-1.80) (-2.27) (1.16) (2.25) 

MISP Low -4.08 1.32 -4.56 -6.12 0.00 4.08 

  (-2.52) (0.56) (-2.46) (-2.73) (-0.03) (2.33) 

 High -0.36 -1.92 -2.40 -6.24 -2.16 -1.68 

  (-0.18) (-0.76) (-0.91) (-2.19) (-0.81) (-0.51) 
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Table 9 

Earnings surprises 
This table presents results from pooled panel regressions of earnings surprises on contemporaneous or lagged emission 

intensity. Emission intensity is defined as raw emissions scaled by total assets. Raw emissions are measured as the 

sum of all toxic emissions in pounds produced in all plants owned by a firm. The sample runs from October 1992 to 

September 2022 and excludes financial industries. SUE1 (SUE2) is the one-year (two-year) earnings surprise 

measured as the actual EPS minus the I/B/E/S median analyst forecast 8 (20) months prior to the end of the forecast 

period, scaled by stock price. LTG is the long-term growth surprise measured as the actual five-year annualized EPS 

growth rate minus the I/B/E/S median analyst long-term growth forecast from 56 months earlier. We only report slope 

coefficients for emission intensity and suppress those for the control variables. All standard errors are clustered at the 

industry and year level, and all regressions include industry- and year-fixed effects. The only independent variable in 

specifications 1 and 3 is emission intensity whereas specifications 2 and 4 control for firm size and book-to-market 

ratio as defined in Table 5. 

 
 1 2 3 4 

 Panel A: SUE1 

Emission Int. 0.002 0.004   

 (0.87) (0.97)   

Lagged Emission Int.   0.003 0.004 

   (0.45) (0.71) 

Controls No Yes No Yes 

Adj R2 0.050 0.059 0.047 0.054 

Obs 9,089  8,399  8,906  8,226  

 Panel B: SUE2 

Emission Int. 0.010 0.013   

 (1.11) (1.49)   

Lagged Emission Int.   0.008 0.009 

   (0.91) (1.10) 

Controls No Yes No Yes 

Adj R2 0.082 0.086 0.085 0.088 

Obs 8,016  7,391  7,952  7,362  

 Panel C: LTG 

Emission Int. 77.166 68.333   

 (0.78) (0.73)   

Lagged Emission Int.   110.241 107.708 

   (1.21) (1.31) 

Controls No Yes No Yes 

Adj R2 0.095 0.100 0.084 0.086 

Obs 1,073  1,008  1,143  1,075  
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Table 10 

Divestment 
This table presents results from pooled panel regressions of institutional ownership on emission intensity and various 

control variables defined in Table 5. Emission intensity is defined as raw emissions scaled by total assets. Raw 

emissions are measured as the sum of all toxic emissions in pounds produced in all plants owned by a firm. The 

sample runs from October 1992 to September 2022 and excludes financial industries. INST is institutional ownership 

ratio, calculated as the ratio of the institutional ownership level computed using equity holdings by institutions that 

file 13F reports to total shares outstanding at quarter end. INST_BANK, INST_INSUR, INST_INVEST, 

INST_ADVISER and INST_OTHER are institutional ownership ratio by banks, insurance companies, investment 

companies (e.g. mutual funds), independent investment advisors and other institutions (such as pension funds, 

sovereign wealth funds, hedge funds), respectively. We only report slope coefficients for emission intensity and 

suppress those for the control variables. All standard errors are clustered at the industry and year level, and all 

regressions include year-month-fixed effects. The only independent variable in specifications 1 and 2 is emission 

intensity whereas specifications 3 and 4 feature the whole set of control variables. Specifications 1 and 3 do not 

include industry-fixed effects whereas specifications 2 and 4 do. 

 
 1 2 3 4 

INST -0.116 -0.151 -0.012 -0.038 

 (-0.93) (-1.27) (-0.13) (-0.40) 

INST_BANK -0.029 -0.031 0.002 0.001 

 (-1.05) (-1.32) (0.12) (0.04) 

INST_INSUR -0.015 -0.018 -0.006 -0.010 

 (-1.35) (-1.85) (-0.74) (-1.26) 

INST_INVEST -0.023 -0.027 -0.013 -0.019 

 (-2.57) (-5.14) (-1.96) (-3.65) 

INST_ADVISER -0.005 -0.004 0.008 0.010 

 (-0.13) (-0.11) (0.23) (0.31) 

INST_OTHER -0.051 -0.076 -0.009 -0.028 

 (-1.03) (-1.41) (-0.22) (-0.65) 

Controls No No Yes Yes 

Industry FE No Yes No Yes 

 

 

 

 

  

  

 

  

 

 

 

 

 


